62 research outputs found

    Static and dynamic performance evaluation of a 3-DOF spindle head using CAD–CAE integration methodology

    Get PDF
    Accurate and rapid modeling and performance evaluation over the entire workspace is a crucially important issue in the design optimization of parallel kinematic machines (PKMs), especially for those dedicated for high-speed machining where high rigidity and high dynamics are the essential requirements. By taking a 3-DOF spindle head named A3 head as an example, this paper presents a feature-based CAD–CAE integration methodology for the static and dynamic analyses of PKMs. The approach can be implemented by four steps: (1) creation of a parameterized geometric (CAD) model with analysis features in SolidWorks; (2) extraction of the features from the CAD model using the Application Programming Interface (API) available in SolidWorks; (3) formulation of a CAD model in SAMCEF by mapping the configuration features from SolidWorks to SAMCEF; and (4) conversion of the analysis features into a scripting language named Bacon for Finite Element Analysis (FEA). The merit of this approach lies in that the FE model at different configurations can be updated automatically in batch mode, and PKMs having different topologies can be modeled with ease thanks to the down to link/joint level featuring. The experiment is also carried out to verify the effectiveness of the proposed approach

    An efficient intelligent algorithm based on WSNs of the drug control system

    Get PDF
    U radu se predlaže novi algoritam, ACORS-ANNDPF za WSNs (bežične senzorske mreže), u svrhu povećanja stope uporabe WSNs i produženja životnog ciklusa Iot-a (Interneta stvari). Razvijen na temelju algoritma kolonije mrava, ovaj se poboljšani algoritam može primijeniti na izbor optimalne putanje i prepoznavanje optimalnog čvora za usmjeravanje u slučaju gubljenja čvora usmjeravanja. Kako bi se smanjilo vrijeme utrošeno na premiještanje skupine mreža, algoritam neuronske mreže odabire pokazatelje u skladu s aktualnim aplikacijskim okruženjem i podešava ih u svrhu optimiziranja podataka skupine. Nakon toga, autor provodi nekoliko simulacijskih eksperimenata i uspoređuje predloženi algoritam s drugim algoritmima. Rezultati pokazuju da se predloženim algoritmom osigurava visoka učinkovitost energije i balansirana potrošnja energije. Prema tome, zaključeno je da se predloženim algoritmom može poboljšati brzina uporabe mreže i povećati prijenosna funkcija mreže.A new algorithm, ACORS-ANNDPF for WSNs, is proposed in this paper to improve the utilization rate of WSNs and prolong the life cycle of the IoT. Developed on the basis of ant colony algorithm, the improved algorithm is applicable to the selection of the optimal path and identification of the optimal routing node in the case of losing the routing node. To reduce the time spent on transferring network packets, the indices are selected by the neural network algorithm in light of the actual application environment and adjusted to optimize the fusion of packet data. After that, the author carries out several simulation experiments and compares the proposed algorithm with other algorithms. The results demonstrate that the proposed algorithm ensures high energy efficiency and balanced energy consumption. Therefore, it is concluded that the proposed algorithm can improve network utilization rate and lead to better network transmission performance

    The establishment and application of a dual Nano-PCR detection method for feline calicivirus and feline herpesvirus type I

    Get PDF
    Feline calicivirus (FCV) and Feline herpesvirus type I (FHV-I) are the main pathogens causing upper respiratory tract infections in cats, and some wild animals. These two viruses always coinfection and cause serious harm to pet industry and wild animals protection. Established a rapid and accurate differential diagnosis method is crucial for prevention and control of disease, however, the current main detection method for these two viruses, either is low sensitivity (immunochromatographic strip), or is time-consuming and cannot differential diagnosis (conventional single PCR). Nanoparticle-assisted polymerase chain reaction (Nano-PCR) is a recently developed technique for rapid detection method of virus and bacteria. In this study, we described a dual Nano-PCR assay through combining the nanotechnology and PCR technology, which for the clinical simultaneous detection of FCV and FHV-I and differential diagnosis of upper respiratory tract infections in cats or other animals. Under optimized conditions, the optimal annealing temperature for dual Nano-PCR was 51.5°C, and specificity test results showed it had no cross reactivity to related virus, such as feline panleukopenia virus (FPV), feline Infectious peritonitis virus (FIPV) and rabies virus (RABV). Furthermore, the detection limit of dual Nano-PCR for FCV and FHV-I both were 1 × 10−8 ng/μL, convert to number of copies of virus DNA was 6.22 × 103copies/μL (FCV) and 2.81 × 103copies/μL (FHV-I), respectively. The dual Nano-PCR detected result of 52 cat clinical samples, including ocular, nasal and faecal swabs, and (3 FCV-positive samples), was consistent with ordinary PCR and the clinical detection results. The dual Nano-PCR method established in this study with strong specificity and high sensitivity can be used for virus nucleic acid (FCV and FHV-I) detection of clinical samples of feline upper respiratory tract infections feline calicivirus and feline herpesvirus while providing support for the early diagnosis of cats that infected by FCV and FHV-I

    Cycling comfort on asphalt pavement: Influence of the pavement-tyre interface on vibration

    Get PDF
    Attainment of cycling comfort on urban roads encourages travelers to use bicycles more often, which has social and environment benefits such as to reduce congestion, air pollution and carbon emissions. Cycling vibration is responsible for the cyclists’ perception of (dis)comfort. How asphalt pavement's surface characteristics relate to cycling comfort, however, remains undiscovered. In this study, the cycling vibration intensity on 46 sections of 24 urban roads was tested using a dynamic cycling comfort measure system while the cyclists’ perception of vibration was identified via questionnaires; the cycling comfort was then defined based on the cycling vibration. To record the accurate pavement-tyre interface under a stable environment, a total of 19 pavement sections were scanned using a 3D digital camera. These 3D models were then 3D printed, which are used to conduct the pressure film test using a self-developed pavement-tyre interface test system. Three ranges of pressure films were adopted to characterize the pavement-tyre interface via 9 parameters, namely contact area (A c ), unit bearing area (B u ), stress intensity (S i ), stress uniformity (S u ), kurtosis (S ku ), spacing (Sp a ), maximum peak spacing (Sp max ), radius ratio (R r ) and fractal dimension (F d ), in consideration of the area characteristics, pressure amplitude, peak spacing and shape of the interface. Finally, the significant interface parameters were identified, and the regression model between interface parameters and cycling comfort was established. Results show that the cycling vibration was described to be ‘very comfortable’ when the human exposure to vibration level (a wv ) was less than 1.78 m/s 2 ; ‘comfortable’ when the a wv was between 1.78 m/s 2 and 2.20 m/s 2 ; and ‘uncomfortable’ when the a wv was greater than 2.20 m/s 2 . The average stress on rear wheel-pavement interface is higher than that of the front wheel. B u-0.6 , Sp a-0.6 , and F d-0.6 are significant to cycling vibration. The 2LW pressure film is recommended for use to measure the bicycle pavement-tyre interface. The recommended interface characteristics are less than 7 mm 2 of the unit bearing area, 6 mm of average spacing and 2.38 of fractal dimension. Finally, dense asphalt mixture performs better in providing cycling comfort than the gap-graded asphalt mixture. Results of this study contribute to current knowledge on bike lane comfort and pavement design, the findings should be interested in cyclists, transport planners, and road authorities

    Streptococcus suis Sequence Type 7 Outbreak, Sichuan, China

    Get PDF
    An outbreak of Streptococcus suis serotype 2 emerged in the summer of 2005 in Sichuan Province, and sporadic infections occurred in 4 additional provinces of China. In total, 99 S. suis strains were isolated and analyzed in this study: 88 isolates from human patients and 11 from diseased pigs. We defined 98 of 99 isolates as pulse type I by using pulsed-field gel electrophoresis analysis of SmaI-digested chromosomal DNA. Furthermore, multilocus sequence typing classified 97 of 98 members of the pulse type I in the same sequence type (ST), ST-7. Isolates of ST-7 were more toxic to peripheral blood mononuclear cells than ST-1 strains. S. suis ST-7, the causative agent, was a single-locus variant of ST-1 with increased virulence. These findings strongly suggest that ST-7 is an emerging, highly virulent S. suis clone that caused the largest S. suis outbreak ever described
    corecore